
A basic guide to mapping RNA-seq reads to genes and
quantifying their abundances with Bioconductor

In this document, we will give a basic overview of how to use Bioconductor packages to
map aligned RNA-seq reads to genes and find the count for each gene (the number of
reads mapping to the gene). We assume that the reads have been aligned to a reference

genome and that the data are stored in a file AlignedReads.bam in the BAM format (that

is, the binary version of the SAM format). The SAM format is the standard output format
from many alignment packages. We start by installing and loading some Bioconductor

packages into R:

source("http://bioconductor.org/biocLite.R")

biocLite("GenomicRanges")

biocLite("Rsamtools")

biocLite("GenomicFeatures")

library(GenomicRanges)

library(Rsamtools)

library(GenomicFeatures)

Load reference genome
The loaded Bioconductor packages will give access to a number of different reference
genomes that can be used as annotation sources. Here, we will show how to use the
UCSC genome browser. With the commands

ucscGenomes()

supportedUCSCtables()

we can list the available genomes and the supported UCSC tables (for example, RefSeq
genes and Ensembl genes).

We can now load a reference genome and a table and make a transcript database by the
following command:

txdb <- makeTranscriptDbFromUCSC(genome = "hg19", tablename =

"refGene")

The resulting txdb is a TranscriptDb object. By writing txdb in the R console, we can

retrieve information about the number of available transcripts, exons and coding
sequences (cds). For this particular example, there are 40,784 transcripts, 234,319 exons
and 205,946 coding sequences.

Group transcripts by gene

We can now group the transcripts in txdb by gene, using the transcriptsBy function,

as follows:

transcriptRanges <- transcriptsBy(txdb,by="gene")

We can also choose by="exon" or by="cds" to group the transcripts in txdb by other

genomic features. We can further group the exons or coding sequences in txdb by using

the functions exonsBy and cdsBy. The transcriptRanges object is a GRanges object,

http://bioconductor.org/biocLite.R

and it is structured as seen in Figure 1. This object has 23,241 elements, one for each

gene. As a comparison, we can group the exons in txdb by gene, which gives the object

exonRanges, partly shown in Figure 2, where we can see for example that there are eight

exons corresponding to the first gene. Grouping transcripts (or exons, or coding
sequences) by exons instead, we obtain an object with 234,319 elements, one for each
exon in the loaded table.

In the transcriptRanges object, we can find the name of each gene (in the tx_name

column) and the length of each corresponding transcript (in the <ranges> column).

Find lengths of genomic features

When the transcripts (exons/cds) in txdb have been grouped by some genomic feature

(e.g. gene), we can find the length (the number of nucleotides) of each gene with the
command

numBases <- sum(width(transcriptRanges))

Now, numBases is a vector with 23,241 elements, giving the lengths (in nucleotides) of the

respective genes. The length of a gene is equal to the sum of the lengths of the intervals in
the <ranges> column and the row corresponding to the gene in the transcriptRanges

object (see Figure 1).

Map reads to transcripts

Now assume that we are given aligned reads in the file AlignedReads.bam, and that we

want to map these reads to genes and count the number of reads mapping to each gene.
We load the BAM file by

aligns <- readBamGappedAlignments(AlignedReads.bam)

The counts can be obtained by

counts <- countOverlaps(transcriptRanges,aligns)

which returns a vector of integers representing the counts for the genes in

transcriptRanges.

Other operations

We can use the function transcripts (or, correspondingly, exons or cds) to extract

genomic features from the txdb object, as follows:

txs <- transcripts(txdb,columns=c("tx_id","tx_name","gene_id"))

This extracts the indicated columns from txdb. An optional vals argument, consisting of

a list of vectors to restrict the output, can be added. For example, vals =

list(tx_id=...). The extracted arguments can be accessed by

transcriptNames <-

as.vector(unlist(elementMetadata(txs)["tx_name"]))

Figure 1. The transcriptRanges object.

Figure 2. The exonRanges object.

